Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38591371

RESUMO

By virtue of its narrow pulse width and high peak power, the femtosecond pulsed laser can achieve high-precision material modification, material additive or subtractive, and other forms of processing. With additional good material adaptability and process compatibility, femtosecond laser-induced application has achieved significant progress in flexible electronics in recent years. These advancements in the femtosecond laser fabrication of flexible electronic devices are comprehensively summarized here. This review first briefly introduces the physical mechanism and characteristics of the femtosecond laser fabrication of various electronic microdevices. It then focuses on effective methods of improving processing efficiency, resolution, and size. It further highlights the typical progress of applications, including flexible energy storage devices, nanogenerators, flexible sensors, and detectors, etc. Finally, it discusses the development tendency of ultrashort pulse laser processing. This review should facilitate the precision manufacturing of flexible electronics using a femtosecond laser.

2.
Opt Express ; 32(5): 8335-8342, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439491

RESUMO

High-performance laser power converters are crucial for laser wireless power transmission systems. Through the optimization of the resistive thermal annealing temperature applied to the laser power converter, the conversion efficiency reaches 55.0%. For 830 nm laser irradiation, the conversion efficiency further elevates to 59.3%. The potential for improvement remains substantial, with an anticipated increase to 63.8% achievable through the optimization of current matching at this specific wavelength. Moreover, the reliability of the laser power converter is demonstrated by its ability to 1,000 hours of operation at an elevated temperature of 180°C.

3.
Opt Express ; 32(4): 6701-6703, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439368

RESUMO

An erratum is presented to modify a calculating error in our published manuscript ["High-power 970 nm semiconductor disk laser" Opt. Express31, 43963 (2023)10.1364/OE.506462 [CrossRef]]. All results throughout the manuscript and its conclusions are unaffected by this correction and remain valid.

4.
Int J Dermatol ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345734

RESUMO

The NLRP3 inflammasome, a complex consisting of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3, has emerged as a critical mediator of pathological inflammation and a significant therapeutic target for various inflammatory diseases. Psoriasis, a chronic inflammatory skin condition without a definitive cure, has shown promising results in animal models through the inhibition of the NLRP3 inflammasome. This review aims to explore the development of the NLRP3 inflammasome in psoriasis and the molecular mechanisms responsible for its inhibition by natural products and small molecules currently being developed for psoriasis treatment. Furthermore, we are examining clinical trials using agents that block the NLRP3 pathway for the treatment of psoriasis. This study is timely to provide a new perspective on managing psoriasis.

5.
Light Sci Appl ; 13(1): 60, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413560

RESUMO

High electro-optical conversion efficiency is one of the most distinctive features of semiconductor lasers as compared to other types of lasers. Its further increase remains a significant objective. Further enhancing the efficiency of edge-emitting lasers (EEL), which represent the highest efficiency among semiconductor lasers at present, is challenging. The efficiency of vertical cavity surface emitting lasers (VCSELs) has always been relatively low compared to EEL. This paper, combining modeling with experiments, demonstrates the potential of multi-junction cascaded VCSELs to achieve high efficiency beyond that of EELs, our simulations show, that a 20-junction VCSEL can achieve an efficiency of more than 88% at room temperature. We fabricated VCSEL devices with different numbers of junctions and compared their energy efficiency. 15-junction VCSELs achieved a maximum efficiency of 74% at room temperature under nanosecond driving current, the corresponding differential quantum efficiency exceeds 1100%, being the largest electro-optical conversion efficiency and differential quantum efficiency reported until now for VCSELs.

6.
Opt Express ; 32(3): 3933-3945, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297603

RESUMO

High-performance depressed cladding waveguides can be fabricated in crystals using ultrafast laser inscription. The investigation of nonlinear phenomena, which manifest during the transmission of high peak power femtosecond pulses within waveguides, holds significant importance for their practical integration into waveguide lasers and waveguide-based components, among other pioneering applications. In this study, the depressed cladding waveguides were successfully prepared in sapphire crystal by a femtosecond laser. The nonlinear phenomena occurring in this waveguide were investigated. The experimental results show that the nonlinearity in the depressed cladding waveguides is significantly enhanced compared with that of the bulk. This enhancement notably manifests through augmented nonlinear losses (NLs) and the third harmonic (TH) blueshift increase. Meanwhile, we theoretically investigate the influence of nonlinear effects on the TH, such as self-phase modulation (SPM), cross-phase modulation (XPM), and group delay. Our results reveal that the phase mismatch between the TH and the pump pulses is the main reason for the asymmetric broadening and blueshift of the TH spectrum. Our study reveals the unique nonlinear properties of the waveguides and lays the foundation for further relevant studies and applications of such waveguides.

7.
Opt Express ; 32(1): 408-414, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175071

RESUMO

To enhance the performance of multi-junction photovoltaics, we investigated three different InP-based tunnel junction designs: p++-InGaAs/n++-InP tunnel junction, p++-InGaAs/i-InGaAs-/n++-InP tunnel junction, and p++-InGaAs/i-InGaAs/n++-InGaAs tunnel junction. The p++-InGaAs/i-InGaAs/n++-InGaAs tunnel junction demonstrated a peak tunneling current density of 495 A/cm2 and a resistivity of 9.3 × 10-4 Ωcm2, allowing the tunnel junction device to operate at a concentration over 30000 suns. This was achieved by inserting an undoped InGaAs quantum well at the p++-InGaAs/n++InGaAs junction interfaces, which enhanced its stability within the operating temperature range of multi-junction solar cells. Moreover, the p++-InGaAs/i-InGaAs/n++-InGaAs tunnel junction exhibited the lowest resistance.

8.
Opt Express ; 31(21): 34937-34945, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859237

RESUMO

Laser Power Converters (LPCs) are components of the laser wireless power transmission (LWPT) system receiving laser power. This paper proposes a comprehensive test method that employs continuous, pulse-pause, and short-time techniques to evaluate the performance of six-junction GaAs LPCs operating with an optical input at 808 nm. Additionally, we investigate the performance of LPCs with different areas and achieve a conversion efficiency over 60%. Furthermore, we apply LPCs with varying areas to wireless information transmission and successfully achieve a response time of 1.7 µs.

9.
Nutrients ; 15(15)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571396

RESUMO

This innovative study investigates the effects of high-protein diets (milk protein) on the circadian rhythm of hepatic lipid metabolism. We aimed to understand how high-protein interventions regulate biological clock genes, maintain lipid metabolism balance, and affect the circadian rhythm of antioxidant levels in vivo. We divided 120 SPF-class C57BL/6J mice into the control, high-fat/low-protein (HF-LP), and high-fat/high-protein (HF-HP) groups. Mice were sacrificed during active (2 a.m. and 8 a.m.) and rest periods (2 p.m. and 8 p.m.). In the HF-LP group, hepatic lipid anabolic enzymes were consistently expressed at high levels, while key lipolytic enzymes slowly increased after feeding with no significant diurnal differences. This led to an abnormal elevation in blood lipid levels, a slow increase in and low levels of superoxide dismutase, and a rapid increase in malondialdehyde levels, deviating from the diurnal trend observed in the control group. However, high-protein interventions in the HF-HP group restored lipid synthase activity and the expression of key catabolic enzymes, exhibiting a precise circadian rhythm. It also improved the lipid-metabolism rhythm, which was disrupted by the high-fat diet. Overall, high-protein interventions restored the expression of key enzymes involved in lipid metabolism, improving the lipid-metabolism rhythm, which was disrupted by the high-fat diet.


Assuntos
Transtornos Cronobiológicos , Dieta Rica em Proteínas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Ritmo Circadiano/fisiologia , Lipídeos
10.
J Pharm Anal ; 13(7): 726-744, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577382

RESUMO

Colorectal tumors often create an immunosuppressive microenvironment that prevents them from responding to immunotherapy. Cannabidiol (CBD) is a non-psychoactive natural active ingredient from the cannabis plant that has various pharmacological effects, including neuroprotective, antiemetic, anti-inflammatory, and antineoplastic activities. This study aimed to elucidate the specific anticancer mechanism of CBD by single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) technologies. Here, we report that CBD inhibits colorectal cancer progression by modulating the suppressive tumor microenvironment (TME). Our single-cell transcriptome and ATAC sequencing results showed that CBD suppressed M2-like macrophages and promoted M1-like macrophages in tumors both in strength and quantity. Furthermore, CBD significantly enhanced the interaction between M1-like macrophages and tumor cells and restored the intrinsic anti-tumor properties of macrophages, thereby preventing tumor progression. Mechanistically, CBD altered the metabolic pattern of macrophages and related anti-tumor signaling pathways. We found that CBD inhibited the alternative activation of macrophages and shifted the metabolic process from oxidative phosphorylation and fatty acid oxidation to glycolysis by inhibiting the phosphatidylinositol 3-kinase-protein kinase B signaling pathway and related downstream target genes. Furthermore, CBD-mediated macrophage plasticity enhanced the response to anti-programmed cell death protein-1 (PD-1) immunotherapy in xenografted mice. Taken together, we provide new insights into the anti-tumor effects of CBD.

11.
Opt Lett ; 48(15): 3885-3888, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527074

RESUMO

We report a voltage-tunable reflective gold wire grid metasurface on vanadium dioxide thin film, which consists of a metal-insulator-metal (MIM) structure. We excite surface plasmon polariton (SPP) modes on the gold surface by fabricating a one-dimensional structured gold wire grid. Joule heating of laser-induced graphene (LIG) can be controlled by the voltage at the bottom, allowing vanadium dioxide in the structure to complete the transition from the insulating state to the metallic state. The phase transition of vanadium dioxide strongly disrupts the plasmon modes excited by the gold wire grid above, thereby realizing a huge change in the reflection spectrum. This acts as a tunable metasurface optical switch with a maximum modulation depth (MD) of over 20 dB. We provide a more effective and simple method for creating tunable metasurfaces in the near-infrared band, which can allow metasurfaces to have wider applications in optical signal processing, optical storage, and holography.

12.
Opt Lett ; 48(15): 3961-3964, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527093

RESUMO

Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.

13.
Nanoscale ; 15(34): 13965-13970, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37565589

RESUMO

Metasurface has attracted massive interest owing to its ability to control light arbitrarily in a wide range of applications, such as high-speed imaging, optical interconnection, and spectroscopy. Here we propose a free space light modulator combined with a gold grating metasurface based on lithium niobate (LiNbO3). The quasi-bound states in the continuum (quasi-BIC) are achieved in the metasurface. In addition, the plasmonic quasi-BIC and the guided-mode resonance (GMR) can be modulated by controlling the polarization of the incident light without any geometric adjustment. Thus, the working wavelength range from 1480 nm to 1620 nm was achieved, and the maximum resonance depth reached about 51% at the resonant wavelength. In addition, the insertion loss of the device was -2.8 dB at a wavelength of 1510 nm. Furthermore, the dynamic modulation speed reached up to 190 MHz and the highest signal-to-noise ratio (SNR) could reach about 49 dB at a frequency of 65 MHz. The data showed potential for the material for applications such as near-infrared imaging, beam steering, and free-space optical communication links.

14.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37448094

RESUMO

The authors wish to make the following corrections to the original paper [...].

15.
Front Pharmacol ; 14: 1122310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063299

RESUMO

Objectives: Since the global broadcast of multidrug-resistant gram-negative bacteria is accelerating, the use of Polymyxin B is sharply increasing, especially in critically ill patients. Unsatisfactory therapeutic effects were obtained because of the abnormal physiological function in critically ill patients. Therefore, the determination of optimal polymyxin B dosage becomes highly urgent. This study aimed to illustrate the polymyxin B pharmacokinetic characteristics by defining the influencing factors and optimizing the dosing regimens to achieve clinical effectiveness. Methods: Steady-state concentrations of polymyxin B from twenty-two critically ill patients were detected by a verified liquid chromatography-tandem mass spectrometry approach. The information on age, weight, serum creatinine, albumin levels, and Acute Physiology and Chronic Health Evaluation-II (APACHE-II) score was also collected. The population PK parameters were calculated by the non-parametric adaptive grid method in Pmetrics software, and the pharmacokinetic/pharmacodynamics target attainment rate was determined by the Monte Carlo simulation method. Results: The central clearance and apparent volume of distribution for polymyxin B were lower in critically ill patients (1.24 ± 0.38 L h-1 and 16.64 ± 12.74 L, respectively). Moreover, albumin (ALB) levels can be used to explain the variability in clearance, and age can be used to describe the variability in the apparent volume of distribution. For maintaining clinical effectiveness and lowering toxicity, 75 mg q12 h is the recommended dosing regimen for most patients suffering from severe infections. Conclusion: This study has clearly defined that in critically ill patients, age and ALB levels are potentially important factors for the PK parameters of polymyxin B. Since older critically ill patients tend to have lower ALB levels, so higher dosages of polymyxin B are necessary for efficacy.

16.
Front Pharmacol ; 14: 1126714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959849

RESUMO

Objective: Chronic kidney disease (CKD) has significant effects on renal clearance of drugs. The application of antibiotics in CKD patients to achieve the desired therapeutic effect is challenging. This study aims to determine meropenem plasma exposure in the CKD population and further investigate optimal dosing regimens. Methods: A healthy adult PBPK model was established using the meropenem's physicochemical parameters, pharmacokinetic parameters, and available clinical data, and it was scaled to the populations with CKD and dialysis. The differences between the predicted concentration, Cmax, and AUClast predicted and observed model values were assessed by mean relative deviations (MRD) and geometric mean fold errors (GMFE) values and plotting the goodness of fit plot to evaluate the model's performance. Finally, dose recommendations for CKD and hemodialysis populations were performed by Monte Carlo simulations. Results: The PBPK models of meropenem in healthy, CKD, and hemodialysis populations were successfully established. The MRD values of the predicted concentration and the GMFE values of Cmax and AUClast were within 0.5-2.0-fold of the observed data. The simulation results of the PBPK model showed the increase in meropenem exposure with declining kidney function in CKD populations. The dosing regimen of meropenem needs to be further adjusted according to the renal function of CKD patients. In patients receiving hemodialysis, since meropenem declined more rapidly during the on-dialysis session than the off-dialysis session, pharmacodynamic evaluations were performed for two periods separately, and respective optimal dosing regimens were determined. Conclusion: The established PBPK model successfully predicted meropenem pharmacokinetics in patients with CKD and hemodialysis and could further be used to optimize dosing recommendations, providing a reference for personalized clinical medication.

17.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36991843

RESUMO

In high dynamic scenes, fringe projection profilometry (FPP) may encounter fringe saturation, and the phase calculated will also be affected to produce errors. This paper proposes a saturated fringe restoration method to solve this problem, taking the four-step phase shift as an example. Firstly, according to the saturation of the fringe group, the concepts of reliable area, shallow saturated area, and deep saturated area are proposed. Then, the parameter A related to the reflectivity of the object in the reliable area is calculated to interpolate A in the shallow and deep saturated areas. The theoretically shallow and deep saturated areas are not known in actual experiments. However, morphological operations can be used to dilate and erode reliable areas to produce cubic spline interpolation areas (CSI) and biharmonic spline interpolation (BSI) areas, which roughly correspond to shallow and deep saturated areas. After A is restored, it can be used as a known quantity to restore the saturated fringe using the unsaturated fringe in the same position, the remaining unrecoverable part of the fringe can be completed using CSI, and then the same part of the symmetrical fringe can be further restored. To further reduce the influence of nonlinear error, the Hilbert transform is also used in the phase calculation process of the actual experiment. The simulation and experimental results validate that the proposed method can still obtain correct results without adding additional equipment or increasing projection number, which proves the feasibility and robustness of the method.

18.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770453

RESUMO

We propose a heat-reconfigurable metasurface composed of the silicon-based gold grating. The asymmetric Fano-like line shape is formed due to the mutual coupling of the local surface plasmon (LSP) in the gap between the two layers of Au gratings and the surface propagating plasmon (SPP) on the surface of the Au gratings. Then, we effectively regulate the Fano resonance by applying a bias voltage to laser-induced graphene (LIG), to generate Joule heat, so that the resonant dip of one mode of the Fano resonance can shift up to 28.5 nm. In contrast, the resonant dip of the other mode barely changes. This effectively regulates the coupling between two resonant modes in Fano resonance. Our study presents a simple and efficient method for regulating Fano-like interference in the near-infrared band.

19.
Opt Express ; 31(26): 43963-43974, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178479

RESUMO

Semiconductor disk lasers (SDLs) have emerged at the frontier of laser technologies. Here, the chip design, packaging process, resonator, pumping strategy, etc. are optimized for the performance improvement of a 970 nm SDL. After optimization, a power of 70.3 W is attained under continuous wave (CW) operation, and the corresponding thermal resistance is around 0.49 K/W. The laser is highly efficient with a maximum slope efficiency of 58.2% and the pump threshold is only around 1.83 kW/cm2. Furthermore, the emission performances under quasi-continuous wave (QCW) pumping are also explored. Setting the duty cycle to about 11%, the chips can output a peak power of 138 W without thermal rollover, and the single pulse energy can reach about 13.6 mJ. As far as we know, they are the best results in terms of power/energy in this wavelength SDL. These explorations may help to understand the thermal characteristics in high-power SDLs and may also be regarded as an extension and enrichment of the earlier works on this topic.

20.
Sensors (Basel) ; 22(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502089

RESUMO

An improved three-frequency heterodyne synthesis phase unwrapping method is proposed to improve the measurement accuracy through phase difference and phase sum operations. This method can reduce the effect of noise and increase the equivalent phase frequency. According to the distribution found in the phase difference calculation process, the Otsu segmentation is introduced to judge the phase threshold. The equivalent frequency obtained from the phase sum is more than those of all projected fringe patterns. In addition, the appropriate period combinations are also studied. The simulations and related experiments demonstrate the feasibility of the proposed method and the ability to improve the accuracy of the measurement results further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...